Parametrizing Compton form factors with neural networks
نویسندگان
چکیده
منابع مشابه
Parton Distributions, Form Factors and Compton Scattering
The soft physics approach to form factors and Compton scattering at moderately large momentum transfer is reviewed. It will be argued that in that approach the Compton cross section is given by the Klein-Nishina cross section multiplied by a factor describing the structure of the proton in terms of two new form factors. These form factors as well as the ordinary electromagnetic form factors rep...
متن کاملGpds, Form Factors and Compton Scattering
As is well-known factorization is an important property of QCD whithout which we would not be able to calculate form factors or cross sections. Factorization into a hard parton-level subprocess to be calculated from perturbative QED and/or QCD, and soft hadronic matrix elements which are subject to non-perturbative QCD and are not calculable at present, has been shown to hold for a number of re...
متن کاملLinking Parton Distributions to Form Factors and Compton Scattering
We relate ordinary and skewed parton distributions to soft overlap contributions to elastic form factors and large angle Compton scattering, using light-cone wave functions in a Fock state expansion of the nucleon. With a simple ansatz for the wave functions of the three lowest Fock states we achieve a good description of unpolarised and polarised parton distributions at large x, and of the dat...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
For neural networks, function determines form
This paper shows that the weights of continuous-time feedback neural networks are uniquely identifiable from input/output measurements. Under very weak genericity assumptions, the following is true: Assume given two nets, whose neurons all have the same nonlinear activation function σ; if the two nets have equal behaviors as “black boxes” then necessarily they must have the same number of neuro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B - Proceedings Supplements
سال: 2012
ISSN: 0920-5632
DOI: 10.1016/j.nuclphysbps.2012.03.020